STABILITY ANALYSIS OF SEIDEL TYPE MULTICOMPONENT ITERATIVE METHOD

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Gauss-seidel Iterative Method for Z-matrices Linear Systems

For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (α) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (α) + K̄ (β) as a preconditioner. We present some com...

متن کامل

Self-adaptive Extrapolated Gauss-Seidel Iterative Methods

In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method for solving the Hermitian positive definite linear systems. Based on optimization models, self-adaptive optimal factor is given. Moreover, we prove the convergence of the self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal factor. Finally, the numerical examples show that the self-adaptive ...

متن کامل

Stability of Jungck-type iterative procedures

Let (X ,d) be a metric space and T : X → X . Several physical problems, expressed as a fixed point equation Tx = x, are solved by approximating a sequence {xn} ⊂ X generated by an iterative procedure f (T ,xn). Let the sequence {xn} converge to a fixed point of T . The iterative procedure f (T ,xn) is considered numerically stable if and only if a sequence {yn} ⊂ X approximatively close to {xn}...

متن کامل

Stability of MultiComponent Biological Membranes

Equilibrium equations and stability conditions are derived for a general class of multicomponent biological membranes. The analysis is based on a generalized Helfrich energy that accounts for geometry through the stretch and curvature, the composition, and the interaction between geometry and composition. The use of nonclassical differential operators and related integral theorems in conjunctio...

متن کامل

Gauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems

We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2002

ISSN: 1392-6292,1648-3510

DOI: 10.3846/13926292.2002.9637172